
Statistical Physics of Computation - Exercises
Emanuele Troiani, Vittorio Erba, Yizhou Xu

September 2024

Week 8

8.1 The average error of the BO estimator and of the Gibbs estimator
Consider a generic inference problem where you generate a hidden signal X∗ ∼ P0, where P0 is
the prior distribution, and observe it through a noisy channel, obtaining the data/observation
Y ∼ Pout (”out” stands for ”output channel”). Think of X as a vector with N components,
X ∈ RN , and Y as a vector with P components, Y ∈ RP . Consider the posterior distribu-
tion Pposterior(X|Y ) ∝ P0(X)Pout(Y |X), and suppose that you are in the Bayes Optimal (BO)
setting, i.e. you know both P0 and Pout, so you know the posterior.

We want to find expressions for the errors of the BO estimator w.r.t. to mean square error
(MSE) loss (i.e. an expression for the MMSE) and of the Gibbs estimator, both as functions of
the overlap order parameters associated to the posterior distribution. We define

Q∗ =
1
N

EX∼P0 ||X||2

Q =
1
N

EY EX∼Pposterior(·|Y )||X||2

m =
1
N

EY ,X∗EX∼Pposterior(·|Y )X
T
∗ X

q =
1
N

EY EX1∼Pposterior(·|Y )EX2∼Pposterior(·|Y )X
T
1 X2

(1)

Q∗ is the self-overlap (norm) of the signal, Q is the self-overlap (norm) of a sample from the
posterior, m is the overlap of a sample from the posterior with the hidden signal, and q is the
overlap between two independent samples from the posterior, and all of these quantities are
averaged over the observation Y defining the posterior.

To be very explicit, the averages are defined as

EX∼P0f(X) =

∫
dX f(X)P0(X) ,

EY f(Y ) =

∫
dY dX∗ f(Y )Pout(Y |X∗)P0(X∗) ,

EY ,X∗f(Y , X∗) =

∫
dY dX∗ f(Y , X∗)Pout(Y |X∗)P0(X∗) ,

EX∼Pposterior(·|Y )f(X) =

∫
dX f(X)Pposterior(X|Y ) .

(2)

These definitions (both the order parameters and the averages) should become nat-
ural to you, even if they are not right now. So convince yourself that they make
sense, and learn them.
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1. Show that for any estimator X̂ : Y → X̂(Y ), i.e. a function taking as input the observation,
and outputting some estimate of the hidden signal that generated the observation, one has

1
N

EY ,X∗ ||X∗ − X̂(Y )||2 =
1
N

EX∗∼P0 ||X∗||2 − 2
N

EY ,X∗XT
∗ X̂(Y ) +

1
N

EY ||X̂(Y )||2 . (3)

Use that ||z||2 = zT z and expand the product. In the first term there is no dependence on
Y , and in the last one no dependence on X∗, so the two associated averages drop.

2. Show that Q = Q∗.
We can apply Nishimori’s identity, telling us that a sample from the posterior is equivalent
to the hidden signal under average over the observation. Then we have

Q =
1
N

EY EX∼Pposterior(·|Y )||X||2

=
1
N

EY ,X∗ ||X∗||2

=
1
N

EX∗ ||X∗||2

= Q∗ .

(4)

We start by considering the BO estimator. In class, we saw that the BO estimator w.r.t. the
MSE is the average of the posterior, i.e.

X̂BO, MSE(Y ) = EX∼Pposterior(·|Y )X . (5)

3. Show that
1
N

EY ,X∗ ||X∗ − X̂BO, MSE(Y )||2 = Q − 2m + q . (6)

Take the result of point 1, and recognize that the first term is directly the definition of
Q∗ = Q. For the second term, we have

1
N

EY ,X∗XT
∗ X̂BO, MSE(Y ) =

1
N

EY ,X∗XT
∗ EX∼Pposterior(·|Y )X

=
1
N

EY ,X∗EX∼Pposterior(·|Y )X
T
∗ X

= m .

(7)

For the third term we have

1
N

EY ||X̂BO, MSE(Y )||2 =
1
N

EY X̂BO, MSE(Y )T X̂BO, MSE(Y )

=
1
N

EY EX1∼Pposterior(·|Y )EX2∼Pposterior(·|Y )X
T
1 X2

= q .

(8)

4. Argue finally that
1
N

EY ,X∗ ||X∗ − X̂BO, MSE(Y )||2 = Q − q . (9)
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By Nishimori’s identities, we know that a sample from the posterior and the hidden signal
are equivalent under the average over the observation Y . Thus

q =
1
N

EY EX1∼Pposterior(·|Y )EX2∼Pposterior(·|Y )X
T
1 X2

=
1
N

EY ,X∗EX∼Pposterior(·|Y )X
T
∗ X

= m ,

(10)

from which the result follows.

We now instead consider the Gibbs estimator. Recall that in the context of the classification
task, we defined the Gibbs estimator as a uniform sample from the solution space of the task. In
the context of inference, the Gibbs estimator is a sample from the posterior distribution (in the
classification task, the posterior was exactly the uniform measure over the solution space, hence
the use of the same name). In this case, we consider the error of the Gibbs estimator on average,
as it is a random estimator.

4. Show that
1
N

EY ,X∗EX∼Pposterior(·|Y )||X∗ − X||2 = 2(Q − q) . (11)

Notice the factor 2 difference with the BO estimator.
Take the result of point 1, and recognize that the first term is directly the definition of
Q∗ = Q. For the second term, we have

1
N

EY ,X∗EX∼Pposterior(·|Y )X
T
∗ X = m = q , (12)

where we used the answer of point 3. For the third term we have

1
N

EY ,X∗EX∼Pposterior(·|Y )X
T X =

1
N

EY ,X∗EX∼Pposterior(·|Y )||X||2

=
1
N

EY EX∼Pposterior(·|Y )||X||2

= Q .

(13)

5. Argue that the Gibbs sampler is on average worse than the BO estimator.
By definition of Bayes Optimality, we already know that the BO estimator is equal or
better than any other estimator, so in particular of any sample from the posterior, and
hence of their average. More explicitly, we can notice that the average MSE of the Gibbs
estimator, minus the MSE of the BO estimator equals

2(Q − q) − (Q − q) = Q − q ≥ 0 (14)

as the scalar product of two vectors q is always smaller than the product of their norms Q.

6. When is the Gibbs sampler (on average) as effective as the BO estimator?
The two errors are equal only if Q = q, i.e. if the overlap is maximal. This is equivalent
by Nishimori’s identity to

m

Q
=

m√
Q

√
Q∗

= 1 . (15)
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That is, the the angle between a sample from the posterior and the hidden signal is zero,
on average over the observation Y and over the sample from the posterior X. In other
words X = X∗. Thus, the Gibbs sampler achieves BO performance exactly when the BO
estimator perfectly recovers the hidden signal. In all other cases, Q ̸= q and the Gibbs
sampler is worse by a factor 2.

8.2 Bayesian learning of a scalar variable
We now consider the following scalar inference problem. We generate a hidden signal x∗ ∈ R

from a prior distribution P0(x). We then observe only a noisy version of the signal

y = x∗ +
√

∆z (16)

where z is an independent Gaussian variable with mean zero and variance 1, and ∆ > 0 plays
the role of a noise-to-signal ratio. Given y, we want to Bayes-optimally estimate the signal x∗.
We first need to set up the Bayesian machinery.

1. Write the output channel distribution Pout(y|x), i.e. the probability of observing y given
a certain signal x.
We observe that, conditioned on x, the observation y is a Gaussian variable with mean x
and variance ∆, so we have

Pout(y|x) = N(y; x; ∆) . (17)

2. Use Bayes theorem to show that the posterior distribution, i.e. the probability that the
signal is x given our observation y, satisfies

Pposterior(x|y) = P0(x)
e− (y−x)2

2∆

Z
(18)

where Z is the normalization factor.
Recall that by Bayes theorem

Pposterior(x|y) = 1
Z

Pout(y|x)P0(x) =
1
Z

e− (y−x)2
2∆ P0(x) . (19)

3. We need to find a good estimator x̂ for our signal. We will use the Bayes Optimal estimator
with respect to the MSE, i.e. the mean of the posterior distribution. Argue that we have:

x̂(y) =

∫
dx x P0(x)e

− (y−x)2
2∆∫

dxP0(x)e
− (y−x)2

2∆

(20)

This is just the definition of the average of the posterior, after explicitly evaluating the
normalization constant Z.
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4. Suppose now that P0 is a standard Gaussian. Show that

x̂(y) =
y

1 + ∆
. (21)

First we have

P0(x)e
− (y−x)2

2∆ =
1√
2π

exp
{

− (y − x)2

2∆
− x2

2

}
=

1√
2π

exp
{

−x2

2

(
1 + ∆

∆

)
+

xy

∆
− y2

2∆

}
(22)

From which we derive by Gaussian integration that∫
dxP0(x)e

− (y−x)2
2∆ =

1√
2π

√
∆

1 + ∆
e

− y2
2(1+∆) (23)

and ∫
dx x P0(x)e

− (y−x)2
2∆ =

1√
2π

y

1 + ∆

√
∆

1 + ∆
e

− y2
2(1+∆) (24)

Putting the two results together gives the result.

5. Show that the MSE that this estimator achieves is

Ex∗,y
[
(x̂(y) − x∗)2

]
=

∆
1 + ∆

(25)

We just compute it:

Ex∗,y
[
(x̂(y) − x∗)2

]
=

Ex∗,y

[(
y

1 + ∆
− x∗

)2
]
=

Ex∗,z

(x∗ +
√

∆z

1 + ∆
− x∗

)2
 =

Ex∗,z

( √
∆

1 + ∆
z − x∗ ∆

1 + ∆

)2
 =

∆
(1 + ∆)2 Ex∗,z

[(
z − x∗√

∆
)2
]
=

∆
(1 + ∆)2 (1 + ∆) =

∆
1 + ∆

.

(26)

The only non-trivial passage is to express the observation y as y = x∗ +
√

∆z, moving from
an average over y to an average over the noise z.

6. If ∆ → ∞ there is no information about the signal in the observation, as it is fully erased
by the large amount of noise. In such a case, given that we know the prior, we may just
sample a candidate estimate for the lost signal from the prior and hope that it achieves a
good performance. What is, on average, the MSE of a sample from the prior? What is the
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MSE of the BO estimator when ∆ → ∞? Discuss what is the BO estimator doing in this
limit.
We have

Ex∗,x∼P0 ||x − x∗||2 = 2Ex∼P0 ||x||2 = 2 (27)

while the MSE of the BO estimator is just 1. Thus, the BO estimator is doing something
smarter than sampling the prior P0. Indeed, by inspecting the expression for the BO
estimator, we see that for ∆ → ∞, x̂(y) → 0. Apparently, it is less wrong to just return the
zero estimator than to sample the prior! This reminds us that Bayes optimality is always
defined w.r.t. a given error measure, and thus the associated BO estimator will pick up
the quirks of that estimator.

7. We now change the prior P0. Find the BO estimator w.r.t. to the MSE error for the case
in which x∗ = 1 with probability p and zero otherwise. You should get:

x̂(y) =
1

1 + exp
{

1−2y
2∆

}
1−p

p

(28)

We can write the prior on x as

P0(x) = (1 − p)δ(x) + pδ(x − 1) (29)

We then have ∫
dxP0(x)e

− (y−x)2
2∆ = (1 − p)e− y2

2∆ + pe− (y−1)2
2∆ (30)

and ∫
dxxP0(x)e

− (y−x)2
2∆ = pe− (y−1)2

2∆ (31)

Taking the ratio gives the estimator.

Notice that in the last point we obtained an estimator which gives us as an estimate a
continuous value in [0, 1], instead of just telling us whether the signal was x∗ = 1 or x∗ = 0.
This is expected, as we asked for the estimate that minimizes the MSE, without specifying that
it should be related to the support of the prior P0. If we wanted an estimator respecting the
constraint that x ∈ {0, 1}, we could have used the maximum-a-posteriori estimator (MAP), i.e.

x̂MAP(y) = argmaxx∈{0,1}Pposterior(x|y) (32)

giving as an estimate the most likely signal to have generated the observation y.

8. Compute the MAP estimator for the prior of point 7.
We have

x̂MAP(y) = argmaxx∈{0,1}Pposterior(x|y)

=


0 if Pposterior(0|y) > Pposterior(1|y)
{0, 1} if Pposterior(0|y) = Pposterior(1|y)
1 if Pposterior(0|y) < Pposterior(1|y)

(33)
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Now the condition Pposterior(0|y) > Pposterior(1|y) can be rewritten as

P0(0)
e− y2

2∆

Z
> P0(1)

e− (y−1)2
2∆

Z

(1 − p)e− y2
2∆ > pe− (y−1)2

2∆

1 − p

p
> e

y2
2∆ − (y−1)2

2∆

2∆ log 1 − p

p
> y2 − (y − 1)2

2∆ log 1 − p

p
> 2y − 1

1
2 + ∆ log 1 − p

p
> y .

(34)

Thus, the MAP estimator equals

x̂MAP(y) = argmaxx∈{0,1}Pposterior(x|y)

=


0 if y < 1

2 + ∆ log 1−p
p

{0, 1} if y = 1
2 + ∆ log 1−p

p

1 if y > 1
2 + ∆ log 1−p

p

(35)

We see that as a function of the noise-to-signal ratio ∆ and the probability of the hidden
signal being zero or one p, the MAP estimator is just a threshold function over y, rounding
to 0 if y is sufficiently small/negative, and rounding to 1 if y is sufficiently large, as one
may intuitively expect.
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